Updating search results...

Search Resources

6912 Results

View
Selected filters:
  • College / Upper Division
10 Advising Guidelines to Grow Your Undergraduate Program
Read the Fine Print
Some Rights Reserved
Rating
5.0 stars

Advising guidelines put together at the University of Arkansas as the undergraduate program grew and developed. Presented at the 2012 SPIN-UP conference in Austin and the PhysTEC leadership meeting at the AAPT summer meeting in Edmonton.

Subject:
Education
Physics
Material Type:
Teaching/Learning Strategy
Provider:
ComPADRE Digital Library
Provider Set:
ComPADRE: Resources for Physics and Astronomy Education
Author:
Art Hobson
Gay Stewart
Lin Oliver
Date Added:
06/14/2012
The 1882 Transit of Venus: Observations from Wellington, South Africa
Read the Fine Print
Some Rights Reserved
Rating
0.0 stars

The transit of Venus is a rare astronomical event that has been well documented throughout history. The most recent transit occurred in June of 2004, and the one before that took place more than 100 years earlier in 1882. This site from the South African Astronomical Observatory provides information and first-hand observations of the 1882 event from Wellington, South Africa. Just prior to the event, an observatory was erected at the Huguenot Seminary for girls, and some of the historical observations made from that site in 1882 are provided here for your perusal.

Subject:
Education
History, Law, Politics
Space Science
Material Type:
Diagram/Illustration
Provider:
AMSER: Applied Math and Science Education Repository
Provider Set:
AMSER: Applied Math and Science Education Repository
Author:
Koorts, W.P.
Date Added:
01/31/2008
1996 Grand Canyon Flood Analysis
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

Analyze the effect of a 1996 controlled flood on a sandbar in Grand Canyon. This exercise uses Spatial Analyst and 3D Analyst.

(Note: this resource was added to OER Commons as part of a batch upload of over 2,200 records. If you notice an issue with the quality of the metadata, please let us know by using the 'report' button and we will flag it for consideration.)

Material Type:
Activity/Lab
Provider:
Science Education Resource Center (SERC) at Carleton College
Provider Set:
Teach the Earth
Author:
Mark Manone
Date Added:
08/17/2019
1D Quantum States Applet
Read the Fine Print
Rating
0.0 stars

This simulation shows time-dependent 1D quantum bound state wavefunctions for a number of different wells. Position, momentum, parity, energy, and current can all be viewed, with phase shown with color. Eigentstates can be selected using the energy level diagram. Multiple-energy-eigenstate wavefunctions can be created through changes in the amplitude and phase of the basis states using spinors. Postion and energy measurements can be taken, resulting in new states of the system.

Subject:
Physics
Material Type:
Interactive
Provider:
ComPADRE Digital Library
Provider Set:
ComPADRE: Resources for Physics and Astronomy Education
Author:
Paul Falstad
Date Added:
04/30/2004
1D Quantum Transitions Applet
Read the Fine Print
Rating
0.0 stars

This simulation explores the transitions between quantum states in a number of 1D systems. The time-dependent wavefunction is displayed. An electric field resonant with the transition between states is applied and the changes in the wavefunction with time are tracked. The dipole transition probability is displayed for different initial to final state transitions, and the user may select the transition they wish to observe.

Subject:
Physics
Material Type:
Interactive
Provider:
ComPADRE Digital Library
Provider Set:
ComPADRE: Resources for Physics and Astronomy Education
Author:
Paul Falstad
Date Added:
05/03/2004
2000 Midterm I + Solutions
Read the Fine Print
Rating
0.0 stars

Midterm examination for a class at MIT covering game theory and its applications to economics. The one-hour-and-twenty-minute open book examination asks open ended theoretical questions. The exam contains questions and solutions.

Subject:
Mathematics
Material Type:
Assessment
Provider:
TeachingWithData.org
Provider Set:
TeachingWithData.org
Author:
Massachusetts Institute of Technology
Muhamet Yildiz
Date Added:
11/07/2014
2012 BFY Conference, W20: Frontiers in Contemporary Physics Education - Gold Nanoparticle Photoabsorption Lab Experiment & Handouts
Read the Fine Print
Some Rights Reserved
Rating
0.0 stars

This file includes the lab manual write-up for the Au nanosphere and nanorod photoabsorption and scattering Lab experiment for the 2nd year Experimental Contemporary Physics Lab Course. In addition, several handouts are provided along with some additional information for instructors. This work was supported in part by by NSF Awards: ECCS #0701703, DMR #0707740 & DMR #1105121. The experiment can readily be upgraded to an advanced lab by giving more responsibility to the students for lab setup (give them an optical breadboard and parts) and by asking for more in-depth analysis and questions which require more knowledge and experimental skills to answer.

Subject:
Engineering
Technology
Chemistry
Physics
Material Type:
Activity/Lab
Lesson Plan
Student Guide
Provider:
ComPADRE Digital Library
Provider Set:
ComPADRE: Resources for Physics and Astronomy Education
Author:
Herbert Jaeger
Jan Yarrison-Rice
Khalid Eid
Date Added:
08/10/2012
2D Circular Square Well Applet
Read the Fine Print
Rating
0.0 stars

This simulation shows time-dependent 2D quantum bound state wavefunctions for a circular hard-walled potential. Position, momentum, angular momentum, and energy of the states can all be viewed, with phase shown with color. Eigentstates can be selected using the energy level diagram. Multiple-energy-eigenstate wavefunctions can be created through changes in the amplitude and phase of the basis states using spinors, or through the creation of Gaussian wavefunctions with the mouse. The quantum numbers of the states are shown.

Subject:
Physics
Material Type:
Interactive
Provider:
ComPADRE Digital Library
Provider Set:
ComPADRE: Resources for Physics and Astronomy Education
Author:
Paul Falstad
Date Added:
05/17/2004
2-D Electrostatic Field Simulation
Read the Fine Print
Rating
0.0 stars

This applet simulates the electric field of many charge distributions, including point charges, line charges, dipoles, cylinders, conducting planes and more. The color can be adjusted for field magnitude or potential. Equipotential or field lines are optional. The field strength and number of particles are adjustable. The field can be displayed as a velocity field or a force field. The description is also available in German.

Subject:
Physics
Material Type:
Interactive
Provider:
ComPADRE Digital Library
Provider Set:
ComPADRE: Resources for Physics and Astronomy Education
Author:
Paul Falstad
Date Added:
06/17/2004
2D-Ising Model
Read the Fine Print
Some Rights Reserved
Rating
0.0 stars

The EJS 2D Ising model displays a lattice of spins. You can change the lattice size, temperature, and external magnetic field. You can modify this simulation if you have Ejs installed by right-clicking within the plot and selecting “Open Ejs Model” from the pop-up menu item. The 2D-Ising model was created using the Easy Java Simulations (Ejs) modeling tool. It is distributed as a ready-to-run (compiled) Java archive. Double clicking the ejs_stp_Ising2D.jar file will run the program if Java is installed. Ejs is a part of the Open Source Physics Project and is designed to make it easier to access, modify, and generate computer models. Additional Ejs models are available. They can be found by searching ComPADRE for Open Source Physics, OSP, or Ejs.

Subject:
Computing and Information
Physics
Material Type:
Activity/Lab
Provider:
ComPADRE Digital Library
Provider Set:
ComPADRE: Resources for Physics and Astronomy Education
Author:
Anne Cox
Harvey Gould
Jan Tobochnik
Wolfgang Christian
Date Added:
02/20/2009
2D Quantum Harmonic Oscillator Applet
Read the Fine Print
Rating
0.0 stars

This simulation shows time-dependent 2D quantum bound state wavefunctions for a harmonic oscillator potential. Position, momentum, angular momentum (for symmetric potentials), and energy of the states can all be viewed, with phase shown with color. Eigentstates can be selected using the energy level diagram. Multiple-energy-eigenstate wavefunctions can be created through changes in the amplitude and phase of the basis states using spinors, or through the creation of Gaussian, elliptical, or square wavefunctions with the mouse. The quantum numbers of the states are shown.

Subject:
Physics
Material Type:
Interactive
Provider:
ComPADRE Digital Library
Provider Set:
ComPADRE: Resources for Physics and Astronomy Education
Author:
Paul Falstad
Date Added:
05/17/2004
2D Rectangular Square Well Applet
Read the Fine Print
Rating
0.0 stars

This simulation shows time-dependent 2D quantum bound state wavefunctions for a rectangular hard-walled potential. Position, momentum, and energy of the states can all be viewed, with phase shown with color. Eigentstates can be selected using the energy level diagram. Multiple-energy-eigenstate wavefunctions can be created through changes in the amplitude and phase of the basis states using spinors, or through the creation of Gaussian, elliptical, or square wavefunctions with the mouse.

Subject:
Physics
Material Type:
Interactive
Provider:
ComPADRE Digital Library
Provider Set:
ComPADRE: Resources for Physics and Astronomy Education
Author:
Paul Falstad
Date Added:
05/17/2004
2-D Vector Field Simulation
Read the Fine Print
Rating
0.0 stars

The applet simulates various vector fields, including spherical, radial, and constant plane. It is a generalized version of an electrostatic field simulation by the same author. The field strength and number of particles simulated are adjustable. Divergence, curl, and potential can be color-coded. Grid lines, potential lines, or streamlines can be displayed. Directions, specific links to the subject and source code are also included.

Subject:
Mathematics
Physics
Material Type:
Interactive
Provider:
ComPADRE Digital Library
Provider Set:
ComPADRE: Resources for Physics and Astronomy Education
Author:
Paul Falstad
Date Added:
06/21/2004
2 x 2 Contingency Tables
Read the Fine Print
Rating
0.0 stars

Created by David Lane of Rice University, this applet simulates experiments using 2 x 2 contingency tables. You specify the population proportions and the sample size and examine the effects on the probability of rejecting the null hypothesis. The author provides instructions and then five different exercises to practice these concepts. Overall, this is a nice interactive resource that allows users a more hands-on approach to statistics.

Subject:
Mathematics
Material Type:
Interactive
Simulation
Provider:
AMSER: Applied Math and Science Education Repository
Provider Set:
AMSER: Applied Math and Science Education Repository
Author:
Lane, David M.
Date Added:
03/03/2009
3-D Electrostatic Field Simulation
Read the Fine Print
Rating
0.0 stars

This applet simulates the electric field and potential for various charge distributions, including point, line, dipole, spherical and other charges. There is also a simulation, with adjustable speed, of a charge moving close to the speed of light. The field can be displayed as a velocity or force field with particles following field lines, or as field or equipotential lines. The potential and fields can be displayed in 3-D or on a movable 2-D slice. The field strength and number of particles is adjustable, and the charge can be reversed. Source code and directions (also in German) are included.

Subject:
Physics
Material Type:
Interactive
Provider:
ComPADRE Digital Library
Provider Set:
ComPADRE: Resources for Physics and Astronomy Education
Author:
Paul Falstad
Date Added:
06/17/2004
3-D Hydrogen Atom Probability Densitites
Conditional Remix & Share Permitted
CC BY-NC-SA
Rating
0.0 stars

The 3-D Hydrogen Atom Probability Densitites model simulates the probability density of the first few (n = 1, 2, and 3, and associated l and m values) energy eigenstates for the Hydrogen atom (the Coulomb potential). The main window shows the energy level diagram for the solutions to the Coulomb potential in three dimensions. States may be selected either by using the dropdown menu item or by using the energy level diagram and clicking a dark green level, with specific n, l, and m values) which will turn bright green and change the state shown in the 3d visualization window. The probability is shown with a 3d cloud, with higher probability shown as a darker sphere. The simulation uses either simple 3D or Java 3D (if installed) to render the view the probability densities. If Java 3D is not installed, the simulation defaults to simple 3D using Java. The 3-D Hydrogen Atom Probability Densitites model was created using the Easy Java Simulations (EJS) modeling tool. It is distributed as a ready-to-run (compiled) Java archive. Double clicking the ejs_qm_hydrogen3d.jar file will run the program if Java is installed.

Subject:
Computing and Information
Mathematics
Chemistry
Physics
Material Type:
Full Course
Interactive
Provider:
ComPADRE Digital Library
Provider Set:
ComPADRE: Resources for Physics and Astronomy Education
Author:
Jose Ignacio Fernández Palop
Date Added:
12/12/2010
3-D Magnetostatic Field Simulation
Read the Fine Print
Rating
0.0 stars

This applet simulates various magnetic sources, including a line of current, a square loop, a magnetic sphere and a solenoid. Size, number of particles, and field strength are adjustable. Display options include particles in velocity or force fields, field vectors, field lines and potential vectors. The vectors and lines can be displayed in 3D or on a movable 2D slice. Charge can be reversed. Source code and directions are included.

Subject:
Physics
Material Type:
Interactive
Provider:
ComPADRE Digital Library
Provider Set:
ComPADRE: Resources for Physics and Astronomy Education
Author:
Paul Falstad
Date Added:
06/17/2004
3D Quantum Harmonic Oscillator Applet
Read the Fine Print
Rating
0.0 stars

This simulation shows time-dependent 3D quantum bound state wavefunctions for a harmonic oscillator potential. Position, angular momentum, and energy of the states can all be viewed, with phase shown with color. Eigentstates can be selected using the energy level diagram. Multiple-energy-eigenstate wavefunctions can be created through changes in the amplitude and phase of the basis states using spinors. The quantum numbers of the states are shown, and the states can be rotated.

Subject:
Physics
Material Type:
Interactive
Provider:
ComPADRE Digital Library
Provider Set:
ComPADRE: Resources for Physics and Astronomy Education
Author:
Paul Falstad
Date Added:
05/17/2004
3-D Vector Field Simulation
Read the Fine Print
Some Rights Reserved
Rating
0.0 stars

This simulation illustrates a wide range of 3D vector fields, including spherical, radial, and linear. The fields can be displayed as vectors, particle trajectories, equipotentials, and other options. The number of particles, vectors, or streamlines, and the field strength are adjustable. Directions and source code are also included. This is an extension of a 3D Electric and Magnetic Field viewer from the same author.

Subject:
Mathematics
Physics
Material Type:
Interactive
Simulation
Provider:
ComPADRE Digital Library
Provider Set:
ComPADRE: Resources for Physics and Astronomy Education
Author:
Paul Falstad
Date Added:
06/21/2004
3 Dimensional Digital Laser Scanning Fundamentals
Read the Fine Print
Educational Use
Rating
0.0 stars

These zipped documents from MatEd provide information on designing a course on 3 Dimensional Digital Laser Scanning Fundamentals. At the end of the course, students will be able to identify applications for 3 dimensional digital laser scanning, operate a NextEngine brand 3 dimensional digital laser scanner, and have proposed a project to reinforce these concepts. The documents include a draft syllabus, contact information for the author of the course, a sample new course proposal form, and a course outline.

Subject:
Engineering
Technology
Education
Material Type:
Diagram/Illustration
Full Course
Lesson Plan
Provider:
AMSER: Applied Math and Science Education Repository
Provider Set:
AMSER: Applied Math and Science Education Repository
Author:
Kraft, Patrick
Date Added:
10/09/2012